Acta Cryst. (1998). C54, 1691-1693

2-(1,2-Dihydro-1-oxophthalazin-2-yl)-4,5dihydroimidazolium Iodide and 2-(1,2-Di-hydro-1-oxophthalazin-2-yl)-4,5,6,7-tetra-hydro-1,3-diazepinium Iodide

Marek L. Gtówka and Waldemar Ksiàzén ${ }^{b}$
${ }^{a}$ Institute of General and Ecological Chemistry, Technical University of Łódź, Żwirki 36, 90-924 Lódź, Poland, and ${ }^{b}$ Institute of Physics, Technical University of Lódź, Wólczañska 223, 90-924 Łódź, Poland. E-mail: marekglo@ck-sg.p.lodz.pl

(Received 27 January 1998; accepted 18 May 1998)

Abstract

The molecular structures of the title compounds, $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}^{+} . \mathrm{I}^{-}$and $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}^{+} . \mathrm{I}^{-}$, are very similar and thus display similar crystal packing and a similar hydrogen-bonding network. The coplanarity of the aromatic ring and the protonated amidine fragment of the saturated ring are due to conjugation of the two π systems. Each I^{-}anion is surrounded by three neighboring molecules, all lying approximately in a plane. Anions participate in only one $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}^{-}$hydrogen bond, with $\mathrm{H} \cdots \mathrm{I}$ distances of ~ 2.7 and $3.0 \AA$, and their coordination spheres are completed by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}^{-}$ contacts.

Comment

The title compounds, 2-(1,2-dihydro-1-oxophthalazin2 -yl)-4,5-dihydroimidazolium iodide, (1), and 2-(1,2-dihydro-1-oxophthalazin-2-yl)-4,5,6,7-tetrahydro-1,3diazepinium iodide, (2), were obtained by Kręzèl (1998) as products of an unexpected cyclization reaction of amidinehydrazones (see Scheme below). The unequivocal determination of their structures was carried out by X-ray diffraction methods.

Although seven 2-substituted 1-phthalazinones have been studied by X-ray diffraction (Cambridge Structural Database, 1997), none has a conjugated positively charged amidine-type substituent at N 2 and thus they cannot be considered suitable reference compounds.

The positive charge of the protonated partially saturated imidazole (or diazepine) ring is spread over the entire conjugated $\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 23$ fragment, resulting in
equal C22-N endocyclic bond lengths (Tables 1 and 3). In addition, shortening of the exocyclic N 2 - C 22 bond length from about 1.46 to 1.390 (6) and 1.422 (5) \AA in (1) and (2), respectively, is observed due to conjugation of the phthalazinone system and the $\mathrm{N}-\mathrm{C}-\mathrm{N} \pi$-system of the other ring. The resulting $\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 22-\mathrm{N} 23$ and N3-N2-C22-N21 torsion angles are -4.1 (7) and $-0.5(6)^{\circ}$ in (1), and $-5.0(6)$ and $-1.6(5)^{\circ}$ in (2). The O 1 atom approaches the H atom at N 23 forming an intramolecular hydrogen contact of 2.19 (6) \AA. The same H atom, however, participates in a 'normal' hydrogen bond ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) with a molecule related by a center of symmetry, forming a dimer (Fig. 2). Each molecule of the dimer also makes a strong $\mathrm{N} 21-\mathrm{H} \cdots \mathrm{I}^{-}$hydrogen bond, with an $\mathrm{N} \cdots \mathrm{I}^{-}$distance of 3.534 (5) and 3.622 (4) \AA, and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}^{-}$angle of $150(6)$ and $140(5)^{\circ}$, in (1) and (2), respectively.

The similarity of the molecular shapes and hydrogen bonds in the studied structures results in similar crystal packing (Fig. 2) and similar unit-cell dimensions. After reduction, the cell angles for (2) are 102.57, 106.85 and 96.42°, compared with values of $100.92,103.27$ and 98.88° for (1).

The packing arrangements of molecules (1) and (2) in their respective crystals are determined by the arranging of planar dimers in hydrophobic belts, which in turn are separated by hydrophilic space filled with I^{-}anions. Each anion makes three contacts ($\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ or $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$) with surrounding approximately coplanar protonated molecules (Fig. 2).

In (1), in addition to the $\mathrm{N} 21-\mathrm{H} \cdots \mathrm{I}^{-}$hydrogen bond, there are two distinct $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}^{-}$contacts, with

(a)

Fig. 1. ORTEPII (Johnson, 1976) drawings of (a) (1) and (b) (2) showing their conformations and atom-labeling schemes. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular packing and $\mathrm{N}-\mathrm{H} \cdots X(X=\mathrm{I}$ or O$)$ hydrogen bonds in structures (1) and (2); views (a) and (c) are parallel to the phthalazinone ring plane, and views (b) and (d) are perpendicular to the phthalazinone ring plane.
$\mathrm{H} \cdots \mathrm{I}$ distances of 3.10 (H6) and 3.11 Å (H4) (Table 2). As the molecule of (1) is generally planar and all three donor protons participating in hydrogen bonds lie approximately in a plane (the sum of the $\mathrm{H} \cdots \mathrm{I}^{-} \cdots \mathrm{H}$ angles is 348°), a two-dimensional network (layers) of hydrogen-bonded molecules is formed in these crystals. In (2), the tetrahydrodiazepine ring is significantly puckered (Figs. 1 and 2) and the planar arrangement of molecules in the crystal is hindered. The resulting packing of (2) differs from that of (1) by a slight twist around the center of symmetry and a parallel shift in opposite directions of molecules in the dimer to accommodate the larger tetrahydrodiazepine ring. In addition to the H atoms at $\mathrm{N} 21, \mathrm{C} 6$ and C 4 of the three molecules surrounding I^{-}which form hydrogen contacts, three other H atoms (at C27, C7 and C5) approach the anion (Fig. $2 b$ and Table 4).

Experimental

Crystals of (1) and (2) suitable for X-ray diffraction study were obtained from methanol solutions.

Compound (1)

Crystal data
$\begin{array}{ll}\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}^{+} \mathrm{I}^{-} & \mathrm{Cu} K \alpha \text { radiation } \\ M_{r}=342.14 & \lambda=1.54178 \AA\end{array}$

Triclinic
$P \overline{1}$
$a=7.303$ (1) \AA
Cell parameters from 62 reflections
$\theta=4-33^{\circ}$
$b=8.583(2) \AA$
$c=10.489$ (2) \AA
$\alpha=100.92(3)^{\circ}$
$\beta=103.27(3)^{\circ}$
$\gamma=98.88(3)^{\circ}$
$\mu=20.40 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.28 \times 0.11 \times 0.11 \mathrm{~mm}$
Pale yellow
$V=614.7(2) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=1.848 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Kuma KM-4 diffractometer
$R_{\text {int }}=0.023$
$\omega-2 \theta$ scans
Absorption correction:
spherical (Kuma
Diffraction, 1995)
$T_{\text {min }}=0.070, T_{\text {max }}=0.213$
2991 measured reflections
2561 independent reflections
2328 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=80.12^{\circ}$
$h=-1 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 13$
3 standard reflections every 100 reflections intensity decay: 0.02%

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\text {max }}=0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$\Delta \rho_{\text {max }}=1.112 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.119$
$\Delta \rho_{\text {min }}=-1.817 \mathrm{e}^{-3}$
$S=1.062$
2561 reflections
173 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0832 P)^{2}\right.$
$+0.659 P]$
where $\left.P=F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Extinction correction: SHELXL97
Extinction coefficient: 0.0012 (5)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (1)

$\mathrm{O} 1-\mathrm{Cl}$	$1.209(6)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.275(7)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.395(5)$	$\mathrm{N} 21-\mathrm{C} 22$	$1.307(6)$
$\mathrm{N} 2-\mathrm{C} 22$	$1.390(6)$	$\mathrm{C} 22-\mathrm{N} 23$	$1.303(6)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.416(6)$		
$\mathrm{C} 22-\mathrm{N} 2-\mathrm{Cl}$	$122.4(4)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{N} 2$	$115.6(4)$
$\mathrm{C} 22-\mathrm{N} 2-\mathrm{N} 3$	$111.3(4)$	$\mathrm{N} 23-\mathrm{C} 22-\mathrm{N} 2$	$125.4(4)$
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{N} 3$	$126.1(4)$	$\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 2$	$120.9(4)$
$\mathrm{O} 1-\mathrm{Cl}-\mathrm{N} 2-\mathrm{C} 22$	$3.6(7)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 22-\mathrm{N} 23$	$-4.1(7)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$	$-0.3(7)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 22-\mathrm{N} 21$	$-0.5(6)$
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 4$	$0.8(7)$		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$ for (1)

D-11. . A	D- \mathbf{H}	H...A	D...A	D-H. \cdot A
N23-H23. . OI	0.73 (7)	2.19 (6)	2.632 (5)	121 (6)
N21-H21...I	0.87 (8)	2.75 (8)	3.534 (5)	150 (6)
$\mathrm{N} 23-\mathrm{H} 23 . \cdots \mathrm{Ol}^{1}$	0.73 (7)	2.34 (7)	3.018 (5)	155 (6)
C4-H4 . . ${ }^{\text {II }}$	0.93	3.11	3.983 (5)	156.6
C5-H5 . . $\mathrm{I}^{\text {I }}$	0.93	3.52	4.287 (7)	141.9
C6--H6. . ${ }^{\text {111 }}$	0.93	3.10	4.021 (5)	172.9

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $2-x, 1-y, 2-z$; (iii)
$x, y-1, z-1$.

Compound (2)

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}^{+} . \mathrm{I}^{-}$
$M_{r}=370.19$
Triclinic
$P \overline{1}$
$a=8.196(2) \AA$
$b=8.550(2) \AA$
$c=10.787(2) \AA$
$\alpha=77.43$ (3) ${ }^{\circ}$
$\beta=73.15(3)^{\circ}$
$\gamma=83.58(3)^{\circ}$
$V=705.2(3) \AA^{3}$
$Z=2$
$D_{x}=1.743 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Kuma KM-4 diffractometer $\omega-2 \theta$ scans
Absorption correction:
spherical (Kuma
Diffraction, 1995)
$T_{\text {min }}=0.125, T_{\text {max }}=0.368$
3183 measured reflections
2968 independent reflections 2650 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.119$
$S=1.092$
Extinction correction: SHELXL97
Extinction coefficient: 0.0035 (6)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 3. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for (2)

$\mathrm{O} 1-\mathrm{C} 1$	$1.220(5)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.292(6)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.403(5)$	$\mathrm{N} 21-\mathrm{C} 22$	$1.308(5)$
$\mathrm{N} 2-\mathrm{N} 3$	$1.391(5)$	$\mathrm{C} 22-\mathrm{N} 23$	$1.308(6)$
$\mathrm{N} 2-\mathrm{C} 22$	$1.422(5)$		
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1$	$124.5(4)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{N} 2$	$118.0(4)$
$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 22$	$111.4(3)$	$\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 2$	$116.3(4)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 22$	$124.1(3)$	$\mathrm{N} 23-\mathrm{C} 22-\mathrm{N} 2$	$118.2(4)$
$\mathrm{C} 9-\mathrm{Cl}-\mathrm{N} 2-\mathrm{N} 3$	$-1.2(6)$	$\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 22-\mathrm{N} 21$	$-1.6(5)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 22$	$2.0(7)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 22-\mathrm{N} 23$	$-5.0(6)$
$\mathrm{Cl}-\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 4$	$0.2(6)$		

Table 4. Hydrogen-bonding geometry (\AA°) for (2)

$\quad D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 23-\mathrm{H} 23 \cdots \mathrm{O} 1$	$0.79(6)$	$1.96(5)$	$2.589(5)$	$135(5)$
$\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{I}$	$0.85(6)$	$2.93(6)$	$3.622(4)$	$140(5)$
$\mathrm{N} 23-\mathrm{H} 23 \cdots \mathrm{O} 1^{1}$	$0.79(6)$	$2.74(5)$	$3.274(5)$	$126(4)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{I}^{11}$	0.93	3.40	$4.237(4)$	151.7
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{I}^{\prime \prime}$	0.93	3.10	$3.987(5)$	161.2
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{I}^{\prime \prime \prime}$	0.93	3.32	$3.983(5)$	129.8

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-1-x,-y, 2-z$; (iii) $x, 1+y, z-1$.
Intensities were corrected for crystal decay. H atoms at carbon were refined with C-H distances constrained to $0.96 \AA$. The two N -bonded H atoms were refined freely with isotropic displacement parameters. The SHELXTL/PC program package (Sheldrick, 1990a) was used throughout the analysis. The $\Delta \rho_{\text {max }}$ and $\Delta \rho_{\text {min }}$ values are greater than $1 \mathrm{e} \AA^{-3}$ for the two reported structures due to the presence of the heavy I atom. The peaks are within $1.3 \AA$ of the I^{-}anion [all within $0.86 \AA$ except $\Delta \rho_{\text {max }}$ in (1)].
For both compounds, data collection: KM-4 software (Kuma Diffraction, 1995); cell refinement: KM-4 software; data reduction: XDISK in SHELXTL/PC; program(s) used to solve structures: SHELXS97 (Sheldrick, 1990b); program(s) used to refine structures: SHELXL97 (Sheldrick, 1997); molecular graphics: $X P$ in $S H E L X T L / P C$; software used to prepare material for publication: SHELXL97.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: KA1276). Services for accessing these data are described at the back of the journal.

References

Cambridge Structural Database (1997). Version 5.13. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. Johnson, C. K. (1976). ORTEPII. Report ORNL-5I38. Oak Ridge National Laboratory, Tennessee, USA.
Krężel, I. (1998). In preparation.
Kuma Diffraction (1995). KM-4 User's Guide. Version 8.00. Kuma Diffraction, Wrocław, Poland.
Sheldrick, G. M. (1990a) SHELXTLIPC. Version 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990b). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

